午夜插插,噜噜噜影院,啪啪伊人网,欧美熟夫,景甜吻戏视频,男人强操性感蕾丝美女视频在线网站,日本美女跳舞视频

Chemical Safety Data Sheet MSDS / SDS

DL-Lactic acid

Revision Date:2024-12-21Revision Number:1

SECTION 1: Identification of the substance/mixture and of the company/undertaking

Product identifier

  • Product name: DL-Lactic acid
  • CBnumber: CB1193448
  • CAS: 598-82-3
  • EINECS Number: 209-954-4
  • Synonyms: DL-Lactic Acid,2-hydroxypropionic acid

Relevant identified uses of the substance or mixture and uses advised against

  • Relevant identified uses: For R&D use only. Not for medicinal, household or other use.
  • Uses advised against: none

Company Identification

  • Company: Chemicalbook
  • Address: Building 1, Huihuang International, Shangdi 10th Street, Haidian District, Beijing
  • Telephone: 400-158-6606

SECTION 2: Hazards identification

Classification of the substance or mixture

Skin irritation, Category 2

Serious eye damage, Category 1

Label elements

Pictogram(s)
  • Signal word

    Danger

Hazard statement(s)

H315 Causes skin irritation

H318 Causes serious eye damage

Precautionary statement(s)
Prevention

P264 Wash ... thoroughly after handling.

P280 Wear protective gloves/protective clothing/eye protection/face protection/hearing protection/...

Response

P302+P352 IF ON SKIN: Wash with plenty of water/...

P321 Specific treatment (see ... on this label).

P332+P317 If skin irritation occurs: Get medical help.

P362+P364 Take off contaminated clothing and wash it before reuse.

P305+P354+P338 IF IN EYES: Immediately rinse with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P317 Get medical help.

Storage

none

Disposal

none

Other hazards

no data available

SECTION 3: Composition/information on ingredients

Substance

  • Product name: DL-Lactic acid
  • Synonyms: DL-Lactic Acid,2-hydroxypropionic acid
  • CAS: 598-82-3
  • EC number: 209-954-4
  • MF: C3H6O3
  • MW: 90.08

SECTION 4: First aid measures

Description of first aid measures

If inhaled

Fresh air, rest. Refer for medical attention.

Following skin contact

Remove contaminated clothes. Rinse skin with plenty of water or shower.

Following eye contact

First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention.

Following ingestion

Rinse mouth. Do NOT induce vomiting. Give nothing to drink. Refer for medical attention .

Most important symptoms and effects, both acute and delayed

Inhalation of mist causes coughing and irritation of mucous membranes. Ingestion, even of diluted preparations, has a corrosive effect on the esophagus and stomach. Contact with more concentrated solutions can cause severe burns of skin or eye. (USCG, 1999)

Indication of any immediate medical attention and special treatment needed

Immediate First Aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand-valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention.

SECTION 5: Firefighting measures

Extinguishing media

Suitable extinguishing media: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Specific Hazards Arising from the Chemical

Excerpt from ERG Guide 153 [Substances - Toxic and/or Corrosive (Combustible)]: Combustible material: may burn but does not ignite readily. When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards. Those substances designated with a (P) may polymerize explosively when heated or involved in a fire. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form. (ERG, 2016)

Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

SECTION 6: Accidental release measures

Personal precautions, protective equipment and emergency procedures

Avoid dust formation. Avoid breathing mist, gas or vapours.Avoid contacting with skin and eye. Use personal protective equipment.Wear chemical impermeable gloves. Ensure adequate ventilation.Remove all sources of ignition. Evacuate personnel to safe areas.Keep people away from and upwind of spill/leak.

Environmental precautions

Collect leaking and spilled liquid in sealable containers as far as possible. Cautiously neutralize spilled liquid with weak alkaline solution such as disodium carbonate. Then wash away with plenty of water.

Methods and materials for containment and cleaning up

ACCIDENTAL RELEASE MEASURES: Personal precautions, protective equipment and emergency procedures: Use personal protective equipment. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas; Environmental precautions: Do not let product enter drains; Methods and materials for containment and cleaning up: Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.

SECTION 7: Handling and storage

Precautions for safe handling

Handling in a well ventilated place. Wear suitable protective clothing. Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Use non-sparking tools. Prevent fire caused by electrostatic discharge steam.

Conditions for safe storage, including any incompatibilities

Separated from strong bases.Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Hygroscopic.

SECTION 8: Exposure controls/personal protection

Control parameters

Occupational Exposure limit values

no data available

Biological limit values

no data available

Exposure controls

Ensure adequate ventilation. Handle in accordance with good industrial hygiene and safety practice. Set up emergency exits and the risk-elimination area.

Individual protection measures

Eye/face protection

Wear tightly fitting safety goggles with side-shields conforming to EN 166(EU) or NIOSH (US).

Skin protection

Wear fire/flame resistant and impervious clothing. Handle with gloves. Gloves must be inspected prior to use. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Respiratory protection

If the exposure limits are exceeded, irritation or other symptoms are experienced, use a full-face respirator.

Thermal hazards

no data available

SECTION 9: Physical and chemical properties

Information on basic physicochemical properties

  • Physical statesyrup
  • ColourColourless
  • Odour

    Odorless

  • Melting point/freezing point

    18°C

  • Boiling point or initial boiling point and boiling range

    122°C (15 mmHg)

  • Flammability

    Combustible.

  • Lower and upper explosion limit/flammability limit

    no data available

  • Flash point

    109.9°C

  • Auto-ignition temperature

    no data available

  • Decomposition temperature

    no data available

  • pH

    The pH of a 10 wt% aqueous solution of lactic acid is 1.75

  • Kinematic viscosity

    Viscosities of aqueous lactic acid at 25 deg C: 1.042 mPa s (6.29 wt%), 1.752 mPa s (25.02 wt%), 4.68 mPa s (54.94 wt%), 36.9 mPa s (88.60 wt%)

  • SolubilityAqueous Base (Slightly), Methanol (Slightly), Water
  • Partition coefficient n-octanol/water

    no data available

  • Vapour pressure

    0.0813 mm Hg at 25 deg C

  • Density and/or relative density

    1.209

  • Relative vapour density

    no data available

  • Particle characteristics

    no data available

SECTION 10: Stability and reactivity

Reactivity

The substance is a medium strong acid.

Chemical stability

Stable under recommended storage conditions.

Possibility of hazardous reactions

LACTIC ACID is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions. Slowly corrodes most metals (USCG, 1999).

Conditions to avoid

no data available

Incompatible materials

Incompatible materials: Bases, Oxidizing agents, Reducing agents

Hazardous decomposition products

When heated to decompositionit emits acrid smoke and irritating fumes.

SECTION 11: Toxicological information

Acute toxicity

  • Oral: LD50 Rat oral 3730 mg/kg
  • Inhalation: LC50 Rat inhalation 7.94 mg/L/4 hr
  • Dermal: no data available

Skin corrosion/irritation

no data available

Serious eye damage/irritation

no data available

Respiratory or skin sensitization

no data available

Germ cell mutagenicity

no data available

Carcinogenicity

no data available

Reproductive toxicity

no data available

STOT-single exposure

no data available

STOT-repeated exposure

no data available

Aspiration hazard

no data available

SECTION 12: Ecological information

Toxicity

  • Toxicity to fish: no data available
  • Toxicity to daphnia and other aquatic invertebrates: no data available
  • Toxicity to algae: no data available
  • Toxicity to microorganisms: no data available

Persistence and degradability

AEROBIC: Lactic acid reached 22% of its theoretical BOD in 5 days using a sewage inoculum(1). In a closed bottle screening test, lactic acid, present at 2 mg/L, reached 12, 67, and 88% of its theoretical BOD after 5, 15, and 30 days, respectively, using an activated sludge inoculum(2). Lactic acid reached 59% of its theoretical BOD in 5 days using a sludge inoculum and the Warburg screening test(3). Lactic acid, present at 500 mg/L, reached 27.5, 29.4, and 33.3% of its theoretical BOD in 6, 12, and 24 hours, respectively, using an activated sludge inoculum at 2500 mg/L(4). Lactic acid was found to be easily biodegradable by biological sewage treatment(5). Lactic acid, present at 100 mg/L, reached 76% of its theoretical BOD in 2 weeks using an activated sludge inoculum at 30 mg/L in the Japanese MITI test which classified the compound as readily biodegradable(6).

Bioaccumulative potential

An estimated BCF of 3 was calculated for lactic acid(SRC), using a log Kow of -0.72(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is low(SRC).

Mobility in soil

Experimental Koc values for lactic acid on a clastic mud (3.5% organic carbon) and a lateritic muddy sand (1.3% organic carbon) were 5.7 and <0.08, respectively(1). Utilizing an HPLC method, the Koc of lactic acid (93% aqueous solution) on soil and sewage sludge at neutral pH and pH 2 was <20.9(2). According to a classification scheme(3), these Koc values suggest that lactic acid is expected to have very high mobility in soil. The pKa of lactic acid is 3.86(4), indicating that this compound will exist partially to almost entirely in anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(5).

Other adverse effects

no data available

SECTION 13: Disposal considerations

Disposal methods

Product

The material can be disposed of by removal to a licensed chemical destruction plant or by controlled incineration with flue gas scrubbing. Do not contaminate water, foodstuffs, feed or seed by storage or disposal. Do not discharge to sewer systems.

Contaminated packaging

Containers can be triply rinsed (or equivalent) and offered for recycling or reconditioning. Alternatively, the packaging can be punctured to make it unusable for other purposes and then be disposed of in a sanitary landfill. Controlled incineration with flue gas scrubbing is possible for combustible packaging materials.

SECTION 14: Transport information

UN Number

ADR/RID: UN1760 (For reference only, please check.)

IMDG: UN1760 (For reference only, please check.)

IATA: UN1760 (For reference only, please check.)

UN Proper Shipping Name

ADR/RID: CORROSIVE LIQUID, N.O.S. (For reference only, please check.)

IMDG: CORROSIVE LIQUID, N.O.S. (For reference only, please check.)

IATA: CORROSIVE LIQUID, N.O.S. (For reference only, please check.)

Transport hazard class(es)

ADR/RID: 8 (For reference only, please check.)

IMDG: 8 (For reference only, please check.)

IATA: 8 (For reference only, please check.)

Packing group, if applicable

ADR/RID: I (For reference only, please check.)

IMDG: I (For reference only, please check.)

IATA: I (For reference only, please check.)

Environmental hazards

ADR/RID: No

IMDG: No

IATA: No

Special precautions for user

no data available

Transport in bulk according to IMO instruments

no data available

SECTION 15: Regulatory information

Safety, health and environmental regulations specific for the product in question

European Inventory of Existing Commercial Chemical Substances (EINECS)
Listed.
EC Inventory
Listed.
United States Toxic Substances Control Act (TSCA) Inventory
Not Listed.
China Catalog of Hazardous chemicals 2015
Not Listed.
New Zealand Inventory of Chemicals (NZIoC)
Not Listed.
PICCS
Not Listed.
Vietnam National Chemical Inventory
Listed.
IECSC
Listed.
Korea Existing Chemicals List (KECL)
Listed.

SECTION 16: Other information

Abbreviations and acronyms

  • CAS: Chemical Abstracts Service
  • ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road
  • RID: Regulation concerning the International Carriage of Dangerous Goods by Rail
  • IMDG: International Maritime Dangerous Goods
  • IATA: International Air Transportation Association
  • TWA: Time Weighted Average
  • STEL: Short term exposure limit
  • LC50: Lethal Concentration 50%
  • LD50: Lethal Dose 50%
  • EC50: Effective Concentration 50%

References

  • IPCS - The International Chemical Safety Cards (ICSC), website: http://www.ilo.org/dyn/icsc/showcard.home
  • HSDB - Hazardous Substances Data Bank, website: https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
  • IARC - International Agency for Research on Cancer, website: http://www.iarc.fr/
  • eChemPortal - The Global Portal to Information on Chemical Substances by OECD, website: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
  • CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple
  • ChemIDplus, website: http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp
  • ERG - Emergency Response Guidebook by U.S. Department of Transportation, website: http://www.phmsa.dot.gov/hazmat/library/erg
  • Germany GESTIS-database on hazard substance, website: http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp
  • ECHA - European Chemicals Agency, website: https://echa.europa.eu/
Disclaimer:

The information in this MSDS is only applicable to the specified product, unless otherwise specified, it is not applicable to the mixture of this product and other substances. This MSDS only provides information on the safety of the product for those who have received the appropriate professional training for the user of the product. Users of this MSDS must make independent judgments on the applicability of this SDS. The authors of this MSDS will not be held responsible for any harm caused by the use of this MSDS.

Recommended Products
DL-Lactic acid SDS Nisin SDS Ascoric Acid SDS Propanoic acid, 2-hydroxy-, homopolymer SDS Folic acid SDS α-Lipoic Acid SDS Malic acid SDS Lactic acid SDS Calcium lactate SDS Citric acid SDS