午夜插插,噜噜噜影院,啪啪伊人网,欧美熟夫,景甜吻戏视频,男人强操性感蕾丝美女视频在线网站,日本美女跳舞视频

SINOWAY INDUSRIAL CO., LTD.
SINOWAY INDUSRIAL CO., LTD.
Business Bank account
Business Address
Basic Contact Infomation
Trade Company

Main products: APIs,pharmaceutical intermediates,health and food supplements,cosmetic raw materials,herbal extracts

Current Location: HOME >> News

Innovative Integration of Electrocatalysis and Biotechnology for Efficient CO2 Conversion to High-Value Ectoine via Methane Intermediary

Release time: 2024-12-10

To address energy demands and enhance microbial conversion efficiency, a Chinese research team has embarked on a groundbreaking innovation to produce ectoine (Ectoin, CAS No.: 96702-03-3). They first synthesized a CuPc/BNCNT catalyst with high selectivity and productivity, designed to accelerate the conversion of carbon dioxide (CO2) into methane (CH4) on an economically viable scale, achieving a Faraday efficiency of 73.5%. This catalyst serves as a pivotal component in their system.

Subsequently, utilizing the high-energy one-carbon substrate CH4 as a carbon source, the research team effectively promoted the growth of engineered methane-oxidizing bacteria. Through bioconversion, these bacteria synthesized high-value long-carbon-chain molecules known as ectoine.

After establishing an efficient electrocatalytic system, the research team further leveraged metabolic engineering modifications and developed two-stage fermentation strategies to achieve a seamless integration between electrocatalysis and a scalable CH4 bioconversion system. This integrated approach not only maximizes the utilization of CO2 but also significantly boosts the production of ectoine, offering a promising solution for both energy sustainability and high-value chemical production. The research underscores the potential of combining electrocatalysis with advanced biotechnological strategies to address global challenges related to carbon utilization and energy generation.